《Mysql学习MySQL查询优化之explain的深入解析》要点:
本文介绍了Mysql学习MySQL查询优化之explain的深入解析,希望对您有用。如果有疑问,可以联系我们。
MYSQL学习在分析查询性能时,考虑EXPLAIN关键字同样很管用.EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作、以及MySQL成功返回结果集需要执行的行数.explain 可以帮助我们分析 select 语句,让我们知道查询效率低下的原因,从而改进我们查询,让查询优化器能够更好的工作.
MYSQL学习一、MySQL 查询优化器是如何工作的
MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行.最终目标是提交 SELECT 语句查找数据行,而不是排除数据行.优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快.如果能够首先进行最严格的测试,查询就可以执行地更快.
EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列:
项 |
说明 |
id |
MySQL Query Optimizer 选定的执行计划中查询的序列号.表示查询中执行 select 子句或操作表的顺序,id 值越大优先级越高,越先被执行.id 相同,执行顺序由上至下. |
select_type 查询类型 |
说明 |
SIMPLE |
简单的 select 查询,不使用 union 及子查询 |
PRIMARY |
最外层的 select 查询 |
UNION |
UNION 中的第二个或随后的 select 查询,不 依赖于外部查询的结果集 |
DEPENDENT UNION |
UNION 中的第二个或随后的 select 查询,依 赖于外部查询的结果集 |
SUBQUERY |
子查询中的第一个 select 查询,不依赖于外 部查询的结果集 |
DEPENDENT SUBQUERY |
子查询中的第一个 select 查询,依赖于外部 查询的结果集 |
DERIVED |
用于 from 子句里有子查询的情况. MySQL 会 递归执行这些子查询, 把结果放在临时表里. |
UNCACHEABLE SUBQUERY |
结果集不能被缓存的子查询,必须重新为外 层查询的每一行进行评估. |
UNCACHEABLE UNION |
UNION 中的第二个或随后的 select 查询,属 于不可缓存的子查询 |
type 重要的项,显示连接使用的类型,按最 优到最差的类型排序 |
说明 |
system |
表仅有一行(=系统表).这是 const 连接类型的一个特例. |
const |
const 用于用常数值比较 PRIMARY KEY 时.当 查询的表仅有一行时,使用 System. |
eq_ref |
const 用于用常数值比较 PRIMARY KEY 时.当 查询的表仅有一行时,使用 System. |
ref |
连接不能基于关键字选择单个行,可能查找 到多个符合条件的行. 叫做 ref 是因为索引要 跟某个参考值相比较.这个参考值或者是一 个常数,或者是来自一个表里的多表查询的 结果值. |
ref_or_null |
如同 ref, 但是 MySQL 必须在初次查找的结果 里找出 null 条目,然后进行二次查找. |
index_merge |
说明索引合并优化被使用了. |
unique_subquery |
在某些 IN 查询中使用此种类型,而不是常规的 ref:value IN (SELECT primary_key FROM single_table WHERE some_expr) |
index_subquery |
在 某 些 IN 查 询 中 使 用 此 种 类 型 , 与 unique_subquery 类似,但是查询的是非唯一 性索引: value IN (SELECT key_column FROM single_table WHERE some_expr) |
range |
只检索给定范围的行,使用一个索引来选择 行.key 列显示使用了哪个索引.当使用=、 <>、>、>=、<、<=、IS NULL、<=>、BETWEEN 或者 IN 操作符,用常量比较关键字列时,可 以使用 range. |
index |
全表扫描,只是扫描表的时候按照索引次序 进行而不是行.主要优点就是避免了排序, 但是开销仍然非常大. |
all |
最坏的情况,从头到尾全表扫描. |
项 |
说明 |
possible_keys |
指出 MySQL 能在该表中使用哪些索引有助于 查询.如果为空,说明没有可用的索引. |
项 |
说明 |
key |
MySQL 实际从 possible_key 选择使用的索引. 如果为 NULL,则没有使用索引.很少的情况 下,MYSQL 会选择优化不足的索引.这种情 况下,可以在 SELECT 语句中使用 USE INDEX (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引 |
项 |
说明 |
key_len |
使用的索引的长度.在不损失精确性的情况 下,长度越短越好. |
项 |
说明 |
rows |
MYSQL 认为必须检查的用来返回请求数据的行数 |
项 |
说明 |
rows |
MYSQL 认为必须检查的用来返回请求数据的行数 |
MYSQL学习extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响.应尽可能对此进行优化.
extra 项 |
说明 |
Using filesort |
表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容.可能在内存或者磁盘上进行排序.MySQL 中无法利用索引完成的排序操作称为“文件排序” |
Using temporary |
表示 MySQL 在对查询结果排序时使用临时表.常见于排序 order by 和分组查询 group by. |
MYSQL学习下面来举一个例子来说明下 explain 的用法.
先来一张表:
代码如下:
CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`author_id` int(10) unsigned NOT NULL,
`category_id` int(10) unsigned NOT NULL,
`views` int(10) unsigned NOT NULL,
`comments` int(10) unsigned NOT NULL,
`title` varbinary(255) NOT NULL,
`content` text NOT NULL,
PRIMARY KEY (`id`)
);
再插几条数据:
代码如下:
INSERT INTO `article`
(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES
(1, 1, 1, 1, '1', '1'),
(2, 2, 2, 2, '2', '2'),
(1, 1, 3, 3, '3', '3');
需求:
查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id.
先查查试试看:
代码如下:
EXPLAIN
SELECT author_id
FROM `article`
WHERE category_id = 1 AND comments > 1
ORDER BY views DESC
LIMIT 1\G
看看部分输出结果:
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 3
Extra: Using where; Using filesort
1 row in set (0.00 sec)
很显然,type 是 ALL,即最坏的情况.Extra 里还出现了 Using filesort,也是最坏的情况.优化是必须的.
MYSQL学习嗯,那么最简单的解决方案就是加索引了.好,我们来试一试.查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段.那么来一个联合索引是最简单的了.
代码如下:
ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );
结果有了一定好转,但仍然很糟糕:
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: range
possible_keys: x
key: x
key_len: 8
ref: NULL
rows: 1
Extra: Using where; Using filesort
1 row in set (0.00 sec)
type 变成了 range,这是可以忍受的.但是 extra 里使用 Using filesort 仍是无法接受的.但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views.当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效.
那么我们需要抛弃 comments,删除旧索引:
代码如下:
DROP INDEX x ON article;
然后建立新索引:
代码如下:
ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;
接着再运行查询:
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: article
type: ref
possible_keys: y
key: y
key_len: 4
ref: const
rows: 1
Extra: Using where
1 row in set (0.00 sec)
可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想.
再来看一个多表查询的例子.
首先定义 3个表 class 和 room.
代码如下:
CREATE TABLE IF NOT EXISTS `class` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`id`)
);
CREATE TABLE IF NOT EXISTS `book` (
`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`bookid`)
);
CREATE TABLE IF NOT EXISTS `phone` (
`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`phoneid`)
) engine = innodb;
然后再分别插入大量数据.插入数据的php脚本:
代码如下:
<?php
$link = mysql_connect("localhost","root","870516");
mysql_select_db("test",$link);
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into class(card) values({$j})";
mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into book(card) values({$j})";
mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
$j = rand(1,20);
$sql = " insert into phone(card) values({$j})";
mysql_query($sql);
}
mysql_query("COMMIT");
?>
然后来看一个左连接查询:
代码如下:
explain select * from class left join book on class.card = book.card\G
分析结果是:
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
显然第二个 ALL 是需要我们进行优化的.
建立个索引试试看:
代码如下:
ALTER TABLE `book` ADD INDEX y ( `card`);
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ref
possible_keys: y
key: y
key_len: 4
ref: test.class.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显.这是由左连接特性决定的.LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引.
删除旧索引:
代码如下:
DROP INDEX y ON book;
建立新索引.
代码如下:
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
基本无变化.
然后来看一个右连接查询:
代码如下:
explain select * from class right join book on class.card = book.card;
分析结果是:
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ref
possible_keys: x
key: x
key_len: 4
ref: test.book.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
优化较明显.这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引.
删除旧索引:
代码如下:
DROP INDEX x ON class;
建立新索引.
代码如下:
ALTER TABLE `book` ADD INDEX y ( `card`);
结果
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
基本无变化.
MYSQL学习最后来看看 inner join 的情况:
代码如下:
explain select * from class inner join book on class.card = book.card;
结果:
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ref
possible_keys: x
key: x
key_len: 4
ref: test.book.card
rows: 1000
Extra:
2 rows in set (0.00 sec)
删除旧索引:
代码如下:
DROP INDEX y ON book;
结果
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
建立新索引.
代码如下:
ALTER TABLE `class` ADD INDEX x ( `card`);
结果
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
2 rows in set (0.00 sec)
综上所述,inner join 和 left join 差不多,都需要优化右表.而 right join 需要优化左表.
MYSQL学习我们再来看看三表查询的例子
MYSQL学习添加一个新索引:
代码如下:
ALTER TABLE `phone` ADD INDEX z ( `card`);
ALTER TABLE `book` ADD INDEX y ( `card`);
代码如下:
explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;
代码如下:
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: class
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 20000
Extra:
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: book
type: ref
possible_keys: y
key: y
key_len: 4
ref: test.class.card
rows: 1000
Extra:
*************************** 3. row ***************************
id: 1
select_type: SIMPLE
table: phone
type: ref
possible_keys: z
key: z
key_len: 4
ref: test.book.card
rows: 260
Extra: Using index
3 rows in set (0.00 sec)
后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错.
MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率.当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大.
因此索引最好设置在需要经常查询的字段中.
转载请注明本页网址:
http://www.vephp.com/jiaocheng/1661.html