《PHP实战:PHP机器学习库php-ml的简单测试和使用方法》要点:
本文介绍了PHP实战:PHP机器学习库php-ml的简单测试和使用方法,希望对您有用。如果有疑问,可以联系我们。
php-ml是一个使用PHP编写的机器学习库.虽然我们知道,python或者是C++提供了更多机器学习的库,但实际上,他们大多都略显复杂,配置起来让很多新手感到绝望.PHP应用
php-ml这个机器学习库虽然没有特别高大上的算法,但其具有最基本的机器学习、分类等算法,我们的小公司做一些简单的数据分析、预测等等都是够用的.我们的项目中,追求的应该是性价比,而不是过分的效率和精度.一些算法和库看上去非常厉害,但如果我们考虑快速上线,而我们的技术人员没有机器学习方面的经验,那么复杂的代码和配置反而会拖累我们的项目.而如果我们本身就是做一个简单的机器学习应用,那么研究复杂库和算法的学习成本很显然高了点,而且,项目出了奇奇怪怪的问题,我们能解决吗?需求改变了怎么办?相信大家都有过这种经历:做着做着,程序忽然报错,自己怎么都搞不清楚原因,上谷歌或百度一搜,只搜出一条满足条件的问题,在五年、十年前提问,然后零回复...PHP应用
所以,选择最简单最高效、性价比最高的做法是必须的.php-ml的速度不算慢(赶紧换php7吧),而且精度也不错,毕竟算法都一样,而且php是基于c的.博主最看不惯的就是,拿python和Java,PHP之间比性能,比适用范围.真要性能,请你拿C开发.真要追求适用范围,也请用C,甚至汇编...PHP应用
首先,我们要使用这个库,需要先下载这个库.在github可以下载到这个库文件(https://github.com/php-ai/php-ml).当然,更推荐使用composer来下载该库,自动配置.PHP应用
当下载好了以后,我们可以看一看这个库的文档,文档都是一些简单的小示例,我们可以自己建一个文件尝试一下.都浅显易懂.接下来,我们来拿实际的数据测试一下.数据集一个是Iris花蕊的数据集,另一个由于记录丢失,所以不知道是有关什么的数据了...PHP应用
Iris花蕊部分数据,有三种不同的分类:PHP应用
PHP应用
不知名数据集,小数点被打成了逗号,所以计算时还需要处理一下:PHP应用
PHP应用
我们先处理不知名数据集.首先,我们的不知名数据集的文件名为data.txt.而这个数据集刚好可以先绘制成x-y折线图.所以,我们先将原数据绘制成一个折线图.由于x轴比较长,所以我们只需要看清楚它大致的形状即可:PHP应用
PHP应用
绘制采用了php的jpgraph库,代码如下:PHP应用
<?php include_once './src/jpgraph.php'; include_once './src/jpgraph_line.php'; $g = new Graph(1920,1080);//jpgraph的绘制操作 $g->SetScale("textint"); $g->title->Set('data'); //文件的处理 $file = fopen('data.txt','r'); $labels = array(); while(!feof($file)){ $data = explode(' ',fgets($file)); $data[1] = str_replace(',','.',$data[1]);//数据处理,将数据中的逗号修正为小数点 $labels[(int)$data[0]] = (float)$data[1];//这里将数据以键值的方式存入数组,方便我们根据键来排序 } ksort($labels);//按键的大小排序 $x = array();//x轴的表示数据 $y = array();//y轴的表示数据 foreach($labels as $key=>$value){ array_push($x,$key); array_push($y,$value); } $linePlot = new LinePlot($y); $g->xaxis->SetTickLabels($x); $linePlot->SetLegend('data'); $g->Add($linePlot); $g->Stroke();
在有了这个原图做对比,我们接下来进行学习.我们采用php-ml中的LeastSquars来进行学习.我们测试的输出需要存入文件,方便我们可以画一个对比图.学习代码如下:PHP应用
<?php require 'vendor/autoload.php'; use Phpml\Regression\LeastSquares; use Phpml\ModelManager; $file = fopen('data.txt','r'); $samples = array(); $labels = array(); $i = 0; while(!feof($file)){ $data = explode(' ',fgets($file)); $samples[$i][0] = (int)$data[0]; $data[1] = str_replace(',','.',$data[1]); $labels[$i] = (float)$data[1]; $i ++; } fclose($file); $regression = new LeastSquares(); $regression->train($samples,$labels); //这个a数组是根据我们对原数据处理后的x值给出的,做测试用. $a = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124]; for($i = 0; $i < count($a); $i ++){ file_put_contents("putput.txt",($regression->predict([$a[$i]]))."\n",FILE_APPEND); //以追加的方式存入文件 }
之后,我们将存入文件的数据读出来,绘制一个图形,先贴最后的效果图:PHP应用
PHP应用
代码如下:PHP应用
<?php include_once './src/jpgraph.php'; include_once './src/jpgraph_line.php'; $g = new Graph(1920,1080); $g->SetScale("textint"); $g->title->Set('data'); $file = fopen('putput.txt','r'); $y = array(); $i = 0; while(!feof($file)){ $y[$i] = (float)(fgets($file)); $i ++; } $x = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124]; $linePlot = new LinePlot($y); $g->xaxis->SetTickLabels($x); $linePlot->SetLegend('data'); $g->Add($linePlot); $g->Stroke();
可以发现,图形出入还是比较大的,尤其是在图形锯齿比较多的部分.不过,这毕竟是40组数据,我们可以看出,大概的图形趋势是吻合的.一般的库在做这种学习时,数据量低的情况下,准确度都非常低.要达到比较高的精度,需要大量的数据,万条以上的数据量是必要的.如果达不到这个数据要求,那我们使用任何库都是徒劳的.所以,机器学习的实践中,真正难的不在精度低、配置复杂等技术问题,而是数据量不够,或者质量太低(一组数据中无用的数据太多).在做机器学习之前,对数据的预先处理也是必要的.PHP应用
接下来,我们来对花蕊数据进行测试.一共三种分类,由于我们下载到的是csv数据,所以我们可以使用php-ml官方提供的操作csv文件的方法.而这里是一个分类问题,所以我们选择库提供的SVC算法来进行分类.我们把花蕊数据的文件名定为Iris.csv,代码如下:PHP应用
<?php require 'vendor/autoload.php'; use Phpml\Classification\SVC; use Phpml\SupportVectorMachine\Kernel; use Phpml\Dataset\CsvDataset; $dataset = new CsvDataset('Iris.csv' , 4, false); $classifier = new SVC(Kernel::LINEAR,$cost = 1000); $classifier->train($dataset->getSamples(),$dataset->getTargets()); echo $classifier->predict([$argv[1],$argv[2],$argv[3],$argv[4]]);//$argv是命令行参数,调试这种程序使用命令行较方便
是不是很简单?短短12行代码就搞定了.接下来,我们来测试一下.根据我们上面贴出的图,当我们输入5 3.3 1.4 0.2的时候,输出应该是Iris-setosa.我们看一下:PHP应用
PHP应用
看,至少我们输入一个原来就有的数据,得到了正确的结果.但是,我们输入原数据集中没有的数据呢?我们来测试两组:PHP应用
PHP应用
由我们之前贴出的两张图的数据看,我们输入的数据在数据集中并不存在,但分类按照我们初步的观察来看,是合理的.PHP应用
所以,这个机器学习库对于大多数的人来说,都是够用的.而大多数鄙视这个库鄙视那个库,大谈性能的人,基本上也不是什么大牛.真正的大牛已经忙着捞钱去了,或者正在做学术研究等等.我们更多的应该是掌握算法,了解其中的道理和玄机,而不是夸夸其谈.当然,这个库并不建议用在大型项目上,只推荐小型项目或者个人项目等.PHP应用
jpgraph只依赖GD库,所以下载引用之后就可以使用,大量的代码都放在了绘制图形和初期的数据处理上.由于库的出色封装,学习代码并不复杂.需要所有代码或者测试数据集的小伙伴可以留言或者私信等,我提供完整的代码,解压即用PHP应用
以上这篇PHP机器学习库php-ml的简单测试和使用方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持维易PHP.PHP应用
转载请注明本页网址:
http://www.vephp.com/jiaocheng/492.html